

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OFCIVIL ENGINEERING

II Year - I Semester		L	Т	P	C
		3	0	0	3
STRENGTH OF MATERIALS - I					

Course Learning Objectives:

- To impart preliminary concepts of Strength of Material and Principles of Elasticity and Plasticity Stress conditions and to develop diagrams of variation of various stresses across the length.
- To give concepts of stresses developed in the cross section and bending equations calculation of section modulus of sections with different crosssections
- The concepts above will be utilized in measuring deflections in beams under various loading and supportconditions
- To classify cylinders based on their thickness and to derive equations for measurement of stresses across the cross section when subjected to external pressure.

Course Outcomes:

- The student will be able to understand the basic materials behavior underthe influence of different external loading conditions and the supportconditions
- The student will be able to draw the diagrams indicating the variation of the key performance features like bending moment and shearforces
- The student will have knowledge of bending concepts and calculation of section modulus and for determination of stresses developed in the beams and deflections due to various loadingconditions
- The student will be able to assess stresses across section of the thin and thick cylinders to arrive at optimum sections to withstand the internal pressure using Lame's equation.

SYLLABUS:

UNIT – I: Simple Stresses And Strains : Elasticity and plasticity – Types of stresses and strains – Hooke's law – stress – strain diagram for mild steel – Working stress – Factor of safety – Lateral strain, Poisson's ratio and volumetric strain – Elastic moduli and the relationship between them – Bars of varying section – stresses in composite bars – Temperature stresses.

Strain Energy – Resilience – Gradual, sudden, impact and shock loadings – simple applications.

UNIT – II: Shear Force and Bending Moment: Definition of beam – Types of beams – Concept of shear force and bending moment – Point of contra flexure – Relation between S.F., B.M and rate of loading at a section of a beam; S.F and B.M diagrams for cantilever, simply supported and overhanging beams subjected to point loads, uniformly distributed loads, uniformly varying loads, partial uniformly distributed loads, couple and combination of these loads.

UNIT – III: Flexural and shear Stresses in beams

Flexural Stresses: Theory of simple bending – Assumptions – Derivation of bending equation: M/I = f/y = E/R, Neutral axis – Determination bending stresses – section modulus of rectangular and circular sections (Solid and Hollow), I, T, Angle and Channel sections – Design of simple beam sections.

Shear Stresses: Derivation of formula – Shear stress distribution across various beam sections like rectangular, circular, I, T Angle sections.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OFCIVIL ENGINEERING

UNIT – IV: Deflection of Beams: Bending into a circular arc – slope, deflection and radius of curvature – Differential equation for the elastic curve of a beam – Double integration and Macaulay's methods – Determination of slope and deflection for cantilever, simply supported and overhanging beams subjected to point loads, uniformly distributed loads, uniformly varying loads, partial uniformly distributed loads, couple and combination of these loads. Mohr's theorems – Moment area method – application to simple cases of cantilever.

UNIT – V: Thin and Thick Cylinders:

Thin cylindrical shells – Derivation of formula for longitudinal and circumferential stresses – hoop, longitudinal and volumetric strains – changes in diameter, and volume of thin cylinders. Thick cylinders: Introduction: Lames theory for thick cylinders, Derivation of Lames formulae, distribution of hoop and radial stresses across the thickness, compound cylinders-distribution of stresses.

TEXT BOOKS:

- 1. A Textbook of Strength of Materials, by R. K. Rajput, 7e (Mechanics of Solids) SI Units S. Chand & Co, NewDelhi
- 2. Strength of materials by R. K. Bansal, LakshmiPublications.

REFERENCES:

- 1. Mechanics of Materials- by R. C.Hibbler, Pearson publishers
- 2. Mechanics of Solids E P Popov, Prentice Hall.
- 3. Strength of Materials by B.S.Basavarajaiah and P. Mahadevappa, 3rd Edition, Universities Press
- 4. Mechanics of Structures Vol I by H.J.Shah and S.B.Junnarkar, Charotar Publishing House Pvt. Ltd.